Role of CO₂ Storage in CCUS Business Models

Role of CO₂ Storage in CCUS Business Models

Prepared for: 2019 Baltic Carbon Forum (BCF)

Session 5: Building a Business Case for CCUS

Presented by: Vello A. Kuuskraa, President Advanced Resources International, Inc. Arlington, Virginia USA

Tallinn, Estonia 22-23 October

Advanced Resources International

Our history of services:

Since 1971*, we have added value to hundreds of oil and gas E&P projects in the U.S. and in over 30 countries, from Australia to Zimbabwe.

Our approach integrates geology and geophysics, petroleum engineering, and strategic and economic analysis.

We specialize in enhanced oil and gas recovery and the geological storage of CO_2 .

*From 1971 – 1987, the company was called Lewin & Associates; from 1987 – 1991, the company was a subsidiary of ICF Consulting/Kaiser Engineers; since 1991, the company is stand alone and called Advanced Resources International, Inc.

Our clients include:

Key Management and Staff

Mr. Vello A. Kuuskraa President

- 40 years of experience in oil and gas particularly in enhanced oil recovery.
- SPE Distinguished Lecturer on Integrating CO₂-EOR and CO₂ storage.
- Major oil background (Chevron)
- B.S., North Carolina State Univ; MBA, Wharton Graduate Business School.
- Member of two Advisory Boards to the U.S. Secretary of Energy -- National Petroleum Council and National Coal Council. Board Member of the University of Wyoming's School of Energy Resources.

Mr. George J. Koperna, Jr. Vice President

- 20 years of experience in oil, gas and CO₂ sequestration.
- Specialties include enhanced oil recovery, advanced production analysis and CO₂ storage project design and implementation.
- Leader of ARI's reservoir simulation team.
- Convener of Working Group in ISO TC-265 on CO₂-EOR.
- B.S. and M.S., Petroleum and Natural Gas Engineering, West Virginia University.
- SPE International (SPEI), Board of Directors.

CCUS Business Models

Three CCUS business models are available to electricity companies and other industrial entities:

- Integrated Business Model. "Doing it all by yourself."
- Third Party Business Model. "Let someone else do it."
- Joint Venture Business Model. "Let's do it together," particularly with a CO₂ EOR operator.

Look for Esposito, R., Kuuskraa, V., Rossman, C., and Corser, M., *Reconsidering CCUS in the Electricity Industry Under Section 45Q Tax Credits*, available from Greenhouse Gases: Science and Technology, Wiley Publications.

PetraNova: Joint Venture Business Model for CCUS

The PetraNova JV (NRG and JX) has installed post-combustion CO_2 capture on a 240 MW coal-fired unit at WA Parish power plant.

Approximately 75 MMcfd of captured CO_2 is transported and used for EOR at Hilcorp's West Ranch oil field with an oil production goal of 15,000 B/D.

Source: NRG, 2017

Assessing the Business Models

Identifying the most advantageous CCUS business model requires information on three key topics.

- Cost of CO₂ Capture. Examining cost reduction insights from installation of CO₂ capture at Sask Power's Boundary Dam and NRG's Parrish Station.
- Cost of CO₂ Storage. Recognizing that a high-quality storage complex located close to a power plant provides considerable value.
- Value of CO₂ for EOR. Incorporating key variables (e.g., price of oil, costs of transportation, quality of the EOR project, etc.) into the value proposition for CO₂ supplies.

SECARB's Anthropogenic Test Site R&D Project

Injection/Storage Site Geology

.

•

Advanced Resources was the lead technical and engineering contractor for SECARB's Anthropogenic Test Site R&D project, a U.S. DOE supported demonstration of the deployment of carbon capture, storage and monitoring technology.

Energy to Serve Your World

CO₂ Monitoring, Verification and Accounting

Advanced Resources

International, Inc.

7 | JAF2019_075.PPT | September 30, 2019 | www.adv-res.com

ENERGY BOARD

Project ECO₂S Storage Feasibility Study

- Southern Company and Mississippi Power are examining establishing a regional CO₂ storage center in Kemper County, east-central Mississippi.
- CO₂ injection into three deep saline formations - the Paluxy, the Washita-Fredericksburg and the Massive/Danzler, and operating and monitoring this facility until post-injection site closure.
- Constructed in compliance with existing U.S. underground injection control (UIC) Class VI regs and EPA's MRV plan and reporting requirements.

Pipeline Corridors and Source of CO₂ Linked to the ECO₂S Project Site

The three CO_2 pipeline corridors linked to the ECO₂S regional storage complex contain a series of large power and industrial facilities with 60 MMmt of annual CO_2 emissions.

- Pipeline "Corridor A": Three major facilities with annual CO₂ emissions of 6 million metric tons; 70-mile, 22-inch (diameter) CO₂ trunkline costing \$100 to \$200 MM, depending on terrain.
- Pipeline "Corridor B": Eleven major facilities with annual CO₂ emissions of 23 million metric tons; 150-mile, 24-inch (diameter) CO₂ trunkline costing \$500 MM, plus 200-mile, 28-inch (diameter) CO₂ trunkline costing \$800 MM.
- Pipeline "Corridor C": Numerous major facilities with annual CO₂ emissions of 31 million metric tons; 150-mile, 54-inch (diameter) CO₂ trunkline costing \$350 to \$750 MM, depending on terrain, plus a series of shorter distance, smaller volume laterals.

Kemper County, Mississippi Regional Structural Setting

Source: Clark, P.E., Pashin, J., and six others, 2013, Site Characterization for CO2 Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama, Figure 1, Modified from Thomas, 1988

- Kemper Co., MS contains the southern portion of the Black Warrior Basin as well as the junction of the Ouachita Embayment and Appalachian Thrust Belt.
- The county is underlain by a thick section of Mesozoic sediments and a Paleozoic (Pennsylvanian, Mississippian and Devonian) section below a regional unconformity.
- The Cretaceous sediments thicken and deepen to the southwest.

ECO₂S/Kemper County CO₂ Storage Complex

The project team has established a CO₂ storage area exceeding 30,000 acres near the Kemper County Energy Facility.

Advanced Resource

International, Inc.

The goal of this project phase is to demonstrate that the subsurface at the $ECO_2S/Kemper$ County CO_2 storage complex can store commercial volumes of CO_2 safely and permanently within the saline reservoir system.

Project ECO₂S Storage Reservoirs

- Abundant stacked saline sandstone bodies in Paluxy, Wash-Fred, and lower Tuscaloosa at depths of 1,160m to 1,650m (3,800 ft to 5,000 ft).
- Over 375m (1,240 ft) of net sand, average porosity of 26 to 28% and Darcy-class permeability.
- At least 30,000 acres available for storage.

High-porosity sandstone in Paluxy Formation

Storage Complex Capacity

Together the three storage zones provide nearly a gigatonne capacity CO_2 storage complex.

CO₂ Storage Reservoir	P ₁₀ Capacity (MMmt)	P ₅₀ Capacity (MMmt)	P ₉₀ Capacity (MMmt)
Massive/Dantzler	60	120	200
WashFred.	280	540	920
Paluxy	160	310	530
TOTAL	510	970	1,660

DOE methodology for site-specific saline storage efficiency calculation based on fluid displacement factors for clastic reservoirs where net pay, net thickness and net porosity are known of 7.4% (P_{10}), 14% (P_{50}) and 24% (P_{90}) (Goodman et al., 2011)

International, Inc.

Project ECO₂S Confining Units (Seals)

The Upper Washita-Fredericksburg shale and Marine Tuscaloosa shale, each with thicknesses of 100 m to 150 m would serve as the primary confining zones for CO_2 storage at the ECO_2S regional CO_2 storage complex.

Project ECO₂S Storage Cost Study

Pre-feasibility level estimate for:

- 1. Site characterization storage facility design and permit application
- 2. Capital costs of establishing the CO_2 storage facility
- 3. Costs of operating and monitoring this facility for 20 to 30 years (60 to 90 million metric tonnes); and
- 4. Costs of 10 years of post-injection monitoring plus subsequent closure of the facility.

ECO₂S Site Characterization

- <u>Drill three wells</u> to gather drilling performance data, whole and sidewall core, logs
- Openhole Logs
 - Triple combo (caliper, array induction, gamma ray, density porosity, neutron porosity, spontaneous potential, photoelectric)
 - Combined magnetic resonance (CMR)
 - Formation micro imager (FMI)
 - Dipole sonic (mechanical properties)
 - Rotary sidewall cores
- <u>Whole core of reservoir and seal intervals</u>
- Evaluation of commercially available <u>2D seismic</u>

Capital Costs of CO₂ Storage

As part of the U.S. DOE/NETL and Mississippi Power Phase II CarbonSAFE Project, Advanced Resources International (ARI) prepared cost estimates for establishing a large-scale CO_2 storage complex in Southeastern U.S.

The example CO_2 storage facility is located near a power plant capturing 3 million metric tons of CO_2 per year using post-combustion capture technology.

The captured CO_2 is compressed and transported by pipeline to the CO_2 storage site located adjacent to the EGU and injected into deep saline formations.

The CO_2 storage facility is constructed and operated in full compliance with Class VI regulations.

Establishing the Storage Facility

The CO_2 storage complex contains a series of CO_2 injection and monitoring wells.

	Well Legend	
Active Monitoring Area (AMA)	 CO₂ Injection Well (1 Washita Fredericksburg; 1 in Paluxy; 2 in Tuscaloosa, one backup) 	
Area of Review (AoR)	$\mathcal{M}_{B}^{\bullet}$ Backup CO ₂ Injection Well	
SM AZ IZ ₂ IZ ₂ IZ ₂ USDW SM	O IZ ₂ (In-Zone Pressure/CO ₂ Plume Monitoring Well)	
$\mathcal{O}_{A}^{\bullet}$ $\mathcal{O}_{A}^{\bullet}$	O AZ (Above Zone Monitoring Well)	
SM SM SM	O USDW (USDW Monitoring Well)	
	O SM (Shallow Groundwater Monitoring Well)	
	 IZ₁ (Distant In-Zone Pressure Monitoring Well) Not shown on Figure. 	

Capital Costs for Establishing Storage Site

		Total Cost (millions)
A. Site Design		
1. Site Characterization and Modeling		\$8.4
 Drill Characterization Wells 		
 Purchase and Interpret 2-D Seismic 		
 Build Geologic Model 		
 Conduct Reservoir/Geophysical Modeling 		
2. Class VI Permit Application		\$0.6
3. MRV Plan for Subpart RR		\$0.1
4. Financial Bonds		\$0.2
5. Site Preparation (included in well costs)		-
6. Acquisition of Pore Space Rights (assumed available)		-
	Sub-Total	\$9.3
B. Site Installation		
1. CO2 Injection Wells		\$14.3
2. Monitoring Wells		\$20.0
3. Seismic/Microseismic		\$2.1
4. Transportation		\$7.4
5. Other Costs/Contingency		\$7.4
	Sub-Total	\$51.2
C. Total		\$60.5

The capital costs for characterizing and installing the CO_2 storage complex at this high quality storage complex are \$60 MM.

Less geologically favorable, smaller and more distant CO₂ storage complexes can have capital costs several times higher.

Storage Costs are Proportional to Volume and Reservoir Quality

			Large Volume Facility	Small Volume Facility
1.	CO	2 Injection Volumes		
	•	Annual (MMmt/yr)	3.0	1.0
	•	Daily (MMcf/d)	~150	~50
2.	CO	2 Storage (MMmt)		
	•	Cumulative 20 to 30 Yrs	60 to 90	20 to 30
3.	Sto	orage Costs (\$MM)		
	Α.	Site Characterization, Design and Permit	\$9	\$9
	Β.	Site Installation and Transportation	\$51	\$35
	C.	Operating and Monitoring (20 to 30 Yrs)	\$40 to \$60	\$30 to \$45
	D.	Post Injection (10 Yrs)	\$15	\$10
		Total	\$115 to \$135	\$63 to \$99
4.	Sto	orage Costs (\$/metric tons)	\$1.50 to \$1.90	\$3.30 to \$4.20

Advanced Resource

JAF2018_037.XLS

Variability of Saline Aquifer Storage Costs

From Grant et al., IJGGC, Volume 72, May 2018, Pages 175-191

Office Locations **Washington, DC** 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420

Knoxville, TN 1210 Kenesaw Ave. Suite 1210A Knoxville, TN 37919-7736

