Tallinn, 22 October 2019

inKER by calcium looping for low-CO₂ cement

Baltic CCUS Scenario for the Cement Industry

nd Jüri Ivask Alla Shogenova, Kazbulat Shogenov Tallinn University of Technology, Department of Geology

Mai Uibu, Rein Kuusik, et al. Technology, Laboratory of Inorganic Materials

Tallinn University of Technology, Department of Materials and Environmental

Introduction

- The EU Horizon 2020 project CLEANKER is aimed on Ca-looping capture of CO₂ emissions produced by cement industry
- For the first time capture-focused EU project includes the full CCUS value chain study
- This study includes:
- techno-economic modelling of CO₂ transport, storage, and utilization scenarios
- CCUS regulatory issues
- definition of BUZZI and ITC-HCG cement plants suitable for first-of-a-kind CCS plant based on transport and storage opportunities
- mineral trapping of CO₂ from the demo system and testing the carbonated materials for reuse in concrete

Introduction

- The main objectives of the CLEANKER CCUS study is to explore local and regional transport, utilization and storage needs, options and solutions in the vicinity of the Vernasca cement plant in Italy, the Kunda cement plant in Estonia and Cesla cement plant in Russia (Slantsy town).
- Integration of the local and regional transport networks, infrastructure and synergy with other large CO₂ emission sources were planned by modelling of one local and one regional CCUS scenarios.
- One possible Estonian-Latvian transboundary CCUS scenario proposed for further development and modelling will be presented today.
- Italian local scenario, which can include CO₂ use for EOR and Geothermal Energy Recovery and storage in depleted oil fields and saline aquifers in Lombardy Region, will be developed also in the CLEANKER project.
- Such scenarios are the first step towards creation of national and regional CCUS networks and infrastructure involving cement plants operated by the end-users of the project.

Development of common methodology for techno-economic modelling of CCUS scenarios*

- To collect data for techno-economic modelling data base structure was developed including Excel datasheets and using of **Geographic information System ArcGIS Pro, version 10.6**, permitting to create and working with spatial data on the desktop.
- MS Excel datasheets are used for easy database collection by project partners. ٠
- All collected data to be integrated into ArcGIS platform as multi-layered maps supported by multiple ٠ parameters for every map location, and to be available online for projects partners when ready.

Datasheets are developed for several GIS layers:

- CO₂ emission sources
- CO₂ mineral carbonation experimental data
- Geological storage sites
- Enhanced hydrocarbon recovery site (EHR)
- Enhanced geothermal energy recovery site (CO2-GER)
- Cluster projects for exploitation study

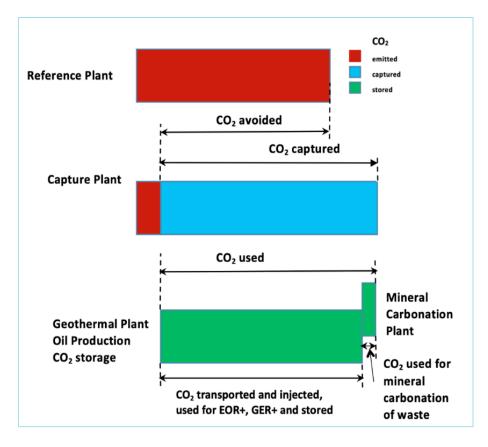
* Shogenova A. and Shogenov K. Definition of a methodology for the development of a techno-economic study for CO_2 transport, storage and utilization. 2018. Deliverable D 7.1. of the Horizon 2020 CLEANKER project (No. 764816), 56 pp.

Tallinn, 22 October 2019

Framework Programme of the European Unior

Development of common methodology for techno-economic modelling of CCUS CLEANKER

Techno-economic modelling of CO₂ transport, storage, utilization scenarios including database collection


- Steps to be done :
- Select storage sites, optionally select additional CO2 emission sources to decrease transport and storage costs
- Fill datasets for CO2 emission sources, storage sites, CO2 use options (If any)
- Integrate data into the ArcGIS platform, including data for natural gas pipelines (transport routes)
- Compose geological models of the storage sites and estimate their storage capacity
- Calculate and select technical parameters for scenarios
- Estimate/calculate economic parameters of scenarios

* Shogenova A. and Shogenov K. Definition of a methodology for the development of a techno-economic study for CO₂ transport, storage and utilization. 2018. Deliverable D 7.1. of the Horizon 2020 CLEANKER project (No. 764816), 56 pp.

Development of common methodology for techno-economic modelling of CCUS CLEAN KER scenarios*

- CO₂ captured is lower than CO₂ produced, while CO₂ avoided is lower than CO₂ captured.
- CO₂ used ex-situ for mineral carbonation (CO₂used_{MC}) should be calculated and excluded from CO₂ flow transported and injected.

* Shogenova A. and Shogenov K. Definition of a methodology for the development of a techno-economic study for CO₂ transport, storage and utilization. 2018. Deliverable D 7.1. of the Horizon 2020 CLEANKER project (No. 764816), 56 pp.

Development of common methodology for techno-economic modelling of CCUS CLEAN KE scenarios

- The cost of CO₂ supplied for CO₂ use is assumed for simplicity according to the approach used in (IEA, 2015)*.
- The cost of CO₂ supplied (CO₂SP) is equal to the difference between CO₂ capture cost (NPVcapture) and the European Emission Allowance Price (EEAP) from EU ETS and National Carbon Tax (NCT) for CO₂ emissions already set up in some EU countries.
- CO₂SP=NPVcapture EEAP NCT
- A positive CO₂SP indicates that it costs more to capture CO₂ than to pay for the emissions allowance through EU ETS and paying NCT. In this case the CO₂ emitter would sell CO₂ to the operator of CO₂ use activity, as is commonly the case today for CO₂-EOR.
- A negative CO₂SP means that the CO₂ emission allowance price together with NCT are higher than the cost to capture CO₂. This creates incentive for the CO₂ emitter to pay for the CO₂ to be verifiably stored.
- Economic parameters and equations were developed for CO₂ use processes including CO₂ mineral carbonation process and CO₂ use for geothermal energy recovery.
- Economic modelling of scenarios includes CO₂ transport, injection, monitoring and verification costs.
- Methodology includes equations for calculation of capital, operation and monitoring costs.

*IEA, 2015. Storing CO2 through Enhanced Oil Recovery, 48 pp.

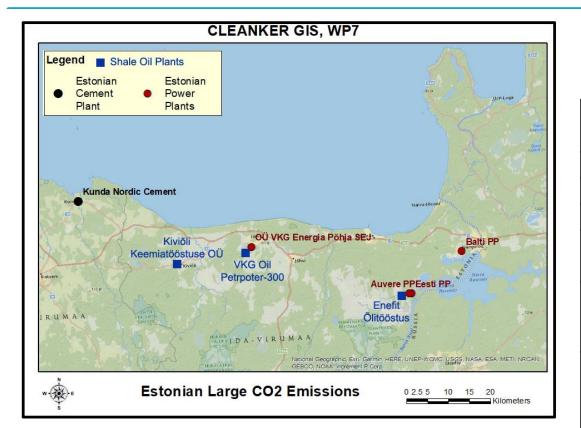
Development of common methodology for techno-economic modelling of CCUS CARTING VIEW CALLS CLEAN KER

Table 1. Shared and specific costs and revenues of CO₂ use options

	Ex-situ Mineral Carbonation/MC	CO ₂ -EOR	CO ₂ -GER				
	COS ⁻	TS					
CO ₂ capture & compression	Should be added to the cost of the carbonated product Shared cost for CCUS storage project						
CO ₂ transport (pipelines and boosters)	Not needed at the Cement capture plant/ short distance to MC plant	Shared cost for CCUS storage project (from medium to long distance)					
Capital	Mineral Carbonation Reactor/ Mineral Carbonation Plant	Shared with CCUS storag and injection facility Additional oil recovery wells Oil-gas-brine separation CO ₂ separation and cleaning	e project injection well Additional energy recovery wells CO ₂ small-scale geothermal plant CO ₂ -brine separation				
	Final acception costs	Shared CO ₂ recycling and brine reinjection well					
Operation	Fixed operation costs (2% of CAPEX)	Fixed operation costs (4% of CAPEX)	Fixed operation costs (4% of CAPEX)				
	Transport of waste material could be needed (from short to medium distance)	On-site operation cost	On-site operation cost				
Storage site monitoring	Not needed	Shared cost for storage project	Not needed				
Monitoring in wells		Shared cost for CCUS sto	rage project				
	REVEN	UES					
Specific	Carbonated product National waste tax (OST)	Recovered Oil	Recovered energy and heat				
Common	CO ₂ al	lowance price in EU ETS (E	EAP)				
Common		National Carbon Tax*					

"Shogenova A. and Shogenov K. Definition of a methodology for the development of a techno-economic study for CO_2 transport, storage and utilization. 2018. Deliverable D 7.1. of the Horizon 2020 CLEANKER project (No. 764816), 56 pp.

*In Estonia only from CO2 from heat production


*In Latvia National Carbon Tax is not overlapping with EEAP

*Not yet introduced in Italy, Lithuania and Russia

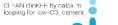
Large industrial CO₂ emissions in Estonia

Nome of the Dignt		CO ₂ to	(Mt/yr)		
Name of the Plant	Company owner/owners	2016	2017	2018	Average
Eesti Power Plant	Eesti Energia	7.94	8.357	7.759	8.019
Auvere Power Plant	Eesti Energia	1.63	1.360	1.519	1.503
Balti Power Plant	Eesti Energia	1.05	1.603	1.125	1.259
Enefit Õlitööstus (shale oil production)	Eesti Energia	0.65	0.815	0.838	0.767
VKG Oil Petrpoter- 300 (shale oil production)	VKG Oil, Viru Keemia Grupp	0.57	0.57 0.594		0.610
OÜ VKG Energia Põhja SEJ (Thermal Power Plant)	OÜ VKG Energia	0.45	0.600	0.589	0.546
Kunda Nordic Cement	Heidelberg Cement Group	0.33	0.560	0.548	0.479
Kiviõli Keemiatööstuse OÜ (shale oil production)	Alexela Group	0.15	0.146	0.147	0.148
	Total for Estonia	12.76	14.033	13.191	13.332

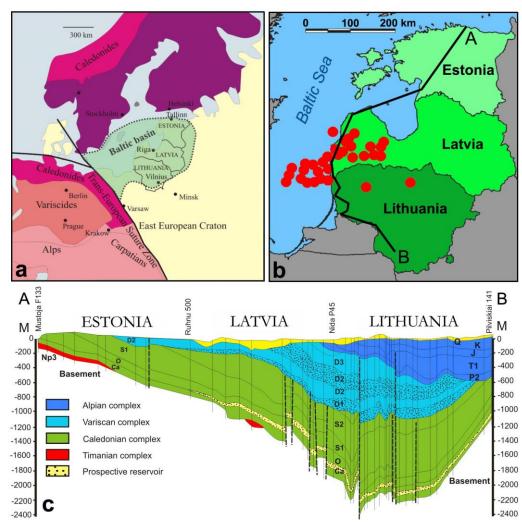
Kunda Nordic Cement Plant - Estonia

CLEANKER GIS, WP7 Legend Shale Oil Plants Estonian Estonian Cement Power Ust-Luga Plant Plants **Production** Kunda Nordic Cement CO₂ total emissions Company/ Clinker (Kt) Cement (Kt) Kun Location Name of (Kt/yr) owner/ the Plant Country City/Town 2017 2018 Average 2017 2018 2017 2018 Average Average 1OL owners **Kiviõli** Keemiatööstuse OÜ Heidelberg VKG O -Petrpoter Cement Group (Germany, 75%); Kunda RUMAA CRH (Ireland, Nordic Kunda 25%) 559,629 547,647 553,638 517,916 505,349 511,633 502,920 526,920 514,920 Estonia Cement **Raw material used** Consumption Limestone (Kt) Other materials (kt) Fuel (t) Type of W-00-E Estonian Large CO fuel 2017 2018 2017 2018 2017 2018 Average 770,900 763,069 141,000 85,550 oil shale 97,350 106,338 101,844 32,883 44,068 38,476 coal Remarks Tsemendiwabrik, Kevad 2018, https://www.knc.ee/et/node/12370 Tsemendiwabrik, Kevad 2019, https://www.knc.ee/et/node/12370

CLEAN clinKEE by calcium looping for low-CO, cement


CLEA

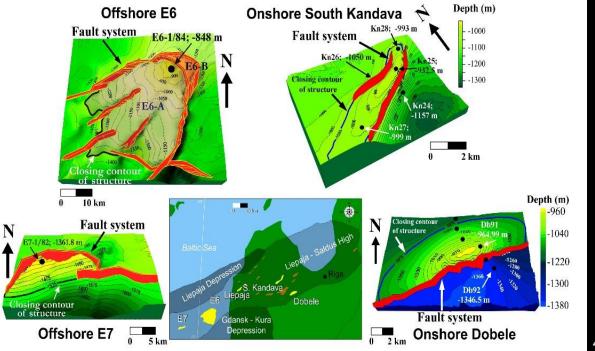
KER



CO2 storage capacity in the Baltic Basin

Physical parameters of the Latvian structural traps (Shogenova, et al., 2009a)

ER



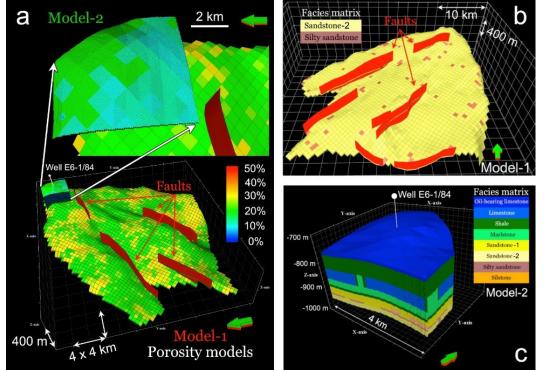
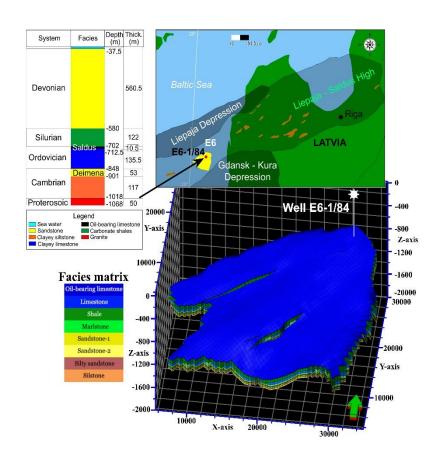

Structure	Structure Depth, m		Area, km ²	CO ₂ storage capacity, Mt
Aizpute	1096	65	51	14
Blidene	1050	66	43	58
Degole	1015	52	41	21
Dobele	950	52	67	56
Edole	945	71	19	7
Kalvene	1063	45	19	14
Liepaja	1072	62	40	6
Luku-Duku	937	45	50	40
N. Kuldiga	925	69	18	13
N. Ligatne	750	50	30	23
N. Blidene	920	40	95	74
S.Kandava	983	25-30	69	44
Snepele	970	30	26	17
Usma	975	50	20	2
Vergale	981	65	10	5
Viesatu	1020	50	19	10
Total				404

Figure 1. (a) Structure map of the Baltic Basin. (b) Approximate location of onshore and offshore Latvian and Lithuanian structures in the Cambrian aquifer prospective for CGS (CO₂ storage potential exceeding 2 Mt), shown by red circles. The black line A–B represents the geological cross section shown in Fig. 1c. (c) Geological cross section across Estonia, Latvia and Lithuania. The cross section line A–B is shown in Fig. 1b. Major aquifers are indicated by dots. Dotted vertical lines mark faults. Np3 – Ediacaran; Ca – Cambrian; O – Ordovician; S1 – Lower Silurian (Llandovery and Wenlock series); S2 – Upper Silurian (Ludlow and Pridoli series); D1, D2 and D3 – Lower, Middle and Upper Devonian, respectively; P2 – Middle Permian; T1 – Lower Triassic; J – Jurassic; K – Cretaceous; Q – Quaternary (updated after Shogenov et. al, 2013).

CO2 storage capacity in the Baltic Basin

CLEAN clinKEE by calcium looping for low-CO, cement

CLEA


KER

Some prospective recently studied structures (Shogenov & Shogenova et al, 2013, a, b, 2015)

3-D geological and petrophysical static models of E6 structure offshore Latvia (Shogenov et al, 2017).

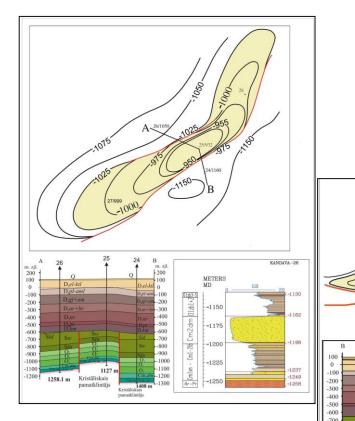
CO2 storage capacity in the Baltic Basin – offshore E6 structure

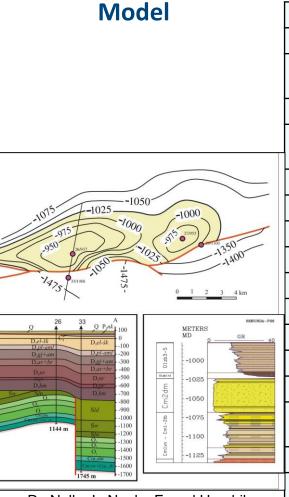
For the first time, we estimated theoretical storage capacity of the Upper ٠ Ordovician Saldus Formation with different levels of reliability at the end of CO₂-EOR cycle:

CLEAN clinKEE by calcium Inoping for low-CO, cement

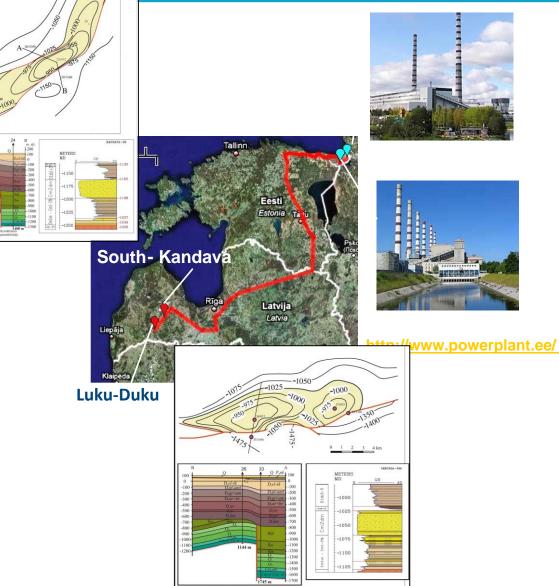
CLEA

KER


- 65–144 Mt, average: 110 Mt
- Total capacity of the E6 structure in two different formations
- (Saldus and Deimena) at the end of CO₂-EOR cycle;
- by optimistic: 320-745 Mt, average: 490 Mt
- and conservative approaches: 170–385 Mt, average: 265 Mt
- (Shogenov & Shogenova, 2017)


	CO ₂ storag	e capacity repo		
Country	Onshore	Offshore	EOR (onshore + offshore)	Reference
Latvia	400	300	-	Šliaupa, et al., 2013
Latvia, E6 structure		370	110 offshore	Shogenov & Shogenova, 2017
Lithuania	29	0	5.7 /100 onshore	Šliaupa, et al., 2013; CGS Baltic seed project (S81), 2017
Sweden	0	145	-	Sopher, et al., 2014
The Russian Federation (Kaliningrad)	-	-	33	Šliaupa, et al., 2013

State of the art: Economic modelling of the capture-transport-sink scenario of industrial CO2 emissions: the Estonian-Latvian cross-border case study, 2011


Sink Name	Luku-Duku	South Kandava
Sink type	aquifer	aquifer
Depth (m) (from the earth	1024	1053
surface)		
Current reservoir pressure (bar)	93.7	98.3
Maximum reservoir pressure	107.8	113
(bar)		
Reservoir radius (km)	8	5
Trap radius (km)	8	5
Reservoir thickness (m)	45	28
Porosity (%)	22	20
Connate water fraction	0.25	0.25
Net to gross ratio	0.8	0.8
Reservoir temperature (°C)	19	11
Permeability (mD)	300	300
Well radius (m)	0.15	0.15
Storage capacity (MtCO ₂)	40.2	44
Well injection rate (Mt/yr)	2	2
Storage efficiency factor in trap	40	40
(%)		
Number of wells	3	4
CO ₂ concentration	20	20

Summary of the input parameters for storage in the GeoCapacity

Source: Shogenova, A., Shogenov, K., Pomeranceva, R., Nulle, I., Neele, F. and Hendriks, C. 2011. Economic modelling of the capture–transport–sink scenario of industrial CO2 emissions: the Estonian–Latvian cross-border case study. Elsevier, The Netherlands. *Energy Procedia* **4**, 2385-2392. | **DOI** |

State of the art: Economic modelling of the capture-transport-sink scenario of industrial CO2 emissions: the Estonian-Latvian cross-border case study, 2011

Summary of the output parameters for Estonian–Latvian cross-border case study (NPV is a net present value, SRC NPV is a net present value for capture costs).

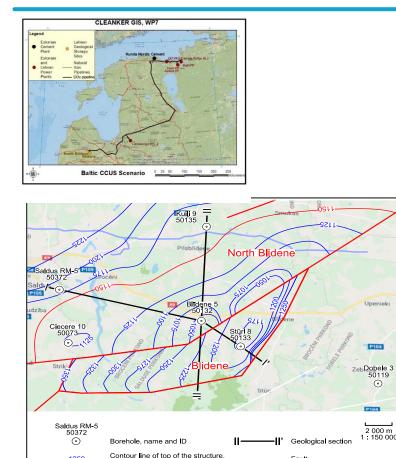
NPV	2835	€ million	NPV storage normalised	3.0	€/tCO2injected
NPV capture	1928	€ million	Unit technical cost	37.4	€/tCO ₂ avoided
NPV compression	210	€ million	€ million Pay out time 3		Yr
NPV transport	447	€ million	SRC NPV capture 0	1103	€ million
NPV storage	250	€ million	SRC NPV compression 0	162	€ million
NPV normalised	37.4	€/tCO ₂ avoided	SRC NPV capture 1	825	€ million
NPV capture normalised	25.5	€/tCO ₂ avoided	SRC NPV compression 1	48	€ million
NPV compression normalised	2.8	€/tCO ₂ avoided	SINK NPV storage 0	129	€ million
NPV transport normalised	5.3	€/tCO ₂ injected	SINK NPV storage 1	121	€ million

Reference

Shogenova, A., Shogenov, K., Pomeranceva, R., Nulle, I., Neele, F. and Hendriks, C. 2011. Economic modelling of the capture–transport–sink scenario of industrial CO2 emissions: the Estonian–Latvian cross-border case study. Elsevier, The Netherlands. *Energy Procedia* 4, 2385-2392. | DOI |

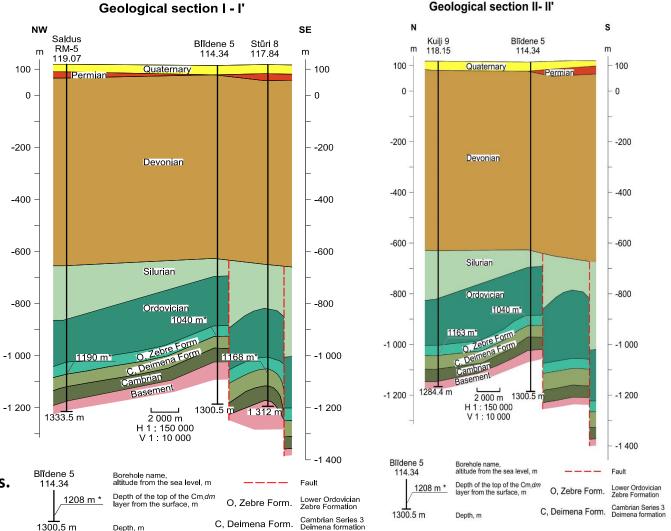
Economic modelling of the capture-transport-sink scenario of industrial CO2 emissions: the Estonian CLEANKER

Summary of results of 2011 economic modelling


- Two power plants close to the city of Narva, with annual CO₂ emissions of 8.0 and 2.7 Mt were chosen for the economic modelling of the capture-transport-sink scenario using the GeoCapacity Decision Support System (DSS) based on the GeoCapacity GIS database.
- Two anticlinal structures of Latvia, Luku-Duku and South Kandava with the area of 50–70 km² were selected for the CO₂ storage. The depth of the top of the Cambrian reservoir is 1020–1050 m, the thickness 28–45 m; permeability of sandstone is more than 300 mD, and the trap storage efficiency factor 40%.
- The conservative storage capacity of these structures 40 and 44 Mt of CO₂ respectively will be enough for 8 years. The estimated pipeline length required for CO₂ transportation is about 800 km.
- The oxyfuel capture technology is applied in this scenario. With a conservative storage capacity for 8 years of emissions, avoidance costs are rated at €37.4 per tonne of CO₂.
- The total cost of the project estimated by the Decision Support System using the GeoCapacity GIS is about €2.8 billion for 30 years of payment period.

Reference

Shogenova, A., Shogenov, K., Pomeranceva, R., Nulle, I., Neele, F. and Hendriks, C. 2011. Economic modelling of the capture–transport– sink scenario of industrial CO2 emissions: the Estonian–Latvian cross-border case study. Elsevier, The Netherlands. *Energy Procedia* 4, 2385-2392. | <u>DOI</u> |


Baltic CCUS Scenario for the Cement Industry: North Blidene and Blidene structures

Structure map of the North Blidene and the Blidene structures. Lines of geological cross sections are shown.

Gas pipeline

The map and geological sections are composed using Bentley PowerCivil for Baltics V8i (SELECTseries 2) software. Base map is from the Google Maps, 2018. (Simmer K., 2018).

KER

CLEA

Two geological sections) were composed using available borehole and seismic interpretation data. The borehole data from (Popovs, 2015) were used to compose nine layers of geological sections. (Simmer K., 2018).

Closing contour line m from the surface

Baltic CCUS Scenario for the Cement Industry: North Blidene and Blidene structures

Studied parameters of the North Blidene and Blidene structures (Šliaupa, et al., 2008; Vangkilde-Pedersen, et al., 2009a; Shogenova, et al., 2009a)

Structure	North Blidene	Blidene							
	Reservoir parameters								
Trap area, km ²	95 43								
Depth of the top, m	1 070 - 1 170	1 170 - 1 270							
Thickness, m	45 - 53	66							
Effective thickness, m	37 - 41	60							
Porosity, %	21	20							
Permeability, mD	370 - 400	860							
Mineralization of	100 -	. 114							
groundwater, g/l	100 - 114								
Well yield, m ³ /day	100								
Hydrostatic reservoir	100 - 115								
pressure, atm	100 - 115								
Water temperature, °C	18	- 20							
Density of the rocks, kg/m ³	2 3	00							
CO ₂ density, kg/m ³	7:	50							
Storage efficiency, %	35	- 40							
	Chemical composition								
SiO ₂ , %	89	.3							
Al ₂ O ₃ , %	3	.6							
CaO, %	0	.6							
	CO ₂ storage capacity								
Conservative estimates, Mt	74	58							

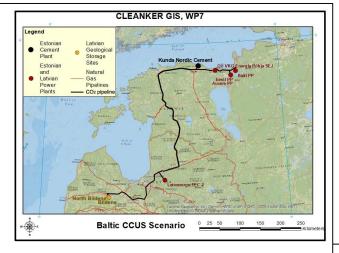
Studied parameters of the North Blidene and Blidene structures ⁶ (Simmer K., 2018, Shogenova et al, 2019)

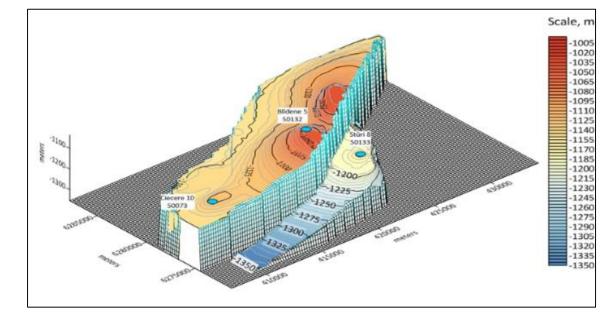
CLEAN clinKEE by calcium

ER

Inoping for low-CO, cen

CLE

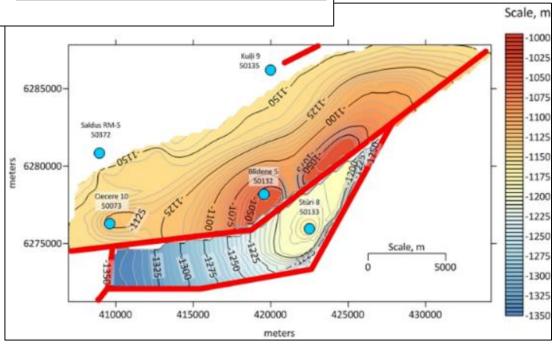

Structure	North Blidene	Blidene
Depth of reservoir top, m	1035-1150	1168-1357
Reservoir thickness, m	48	66
Trap area, km ²	141	62
CO ₂ density, kg/m ³	881	866
Net to gross ratio, %	75	80
Salinity, g/l	100-114	100-114
T, ≌C	18	22.9
Storage efficiency factor (S _{eff}) Optimistic/Conservative (%)	30/4	5/3
Porosity (min-max/avg), %	12.5-25.6/20	13.5-26.6/21
Optimistic CO ₂ storage capacity (min-max/avg), Mt	167-342/267	19-37.5/29.6
Conservative CO ₂ storage capacity (min-max/avg), Mt	22.2-45.5/35.6	11.4-22.5/17.8


Tallinn, 22 October 2019

Co-funded by the Horizon 2020 Framework Programme of the European Union

North Blidene and Blidene structures

- The North Blidene and Blidene structures, the largest prospective for CO₂ storage structures located in the western Latvia, were chosen for the **Estonian-Latvian onshore CCUS scenario.**
- In the present study new contour and 3D structure maps were composed ٠ and CO₂ storage capacity of the Blidene and the North Blidene structures were calculated using improved estimations of all needed parameters.

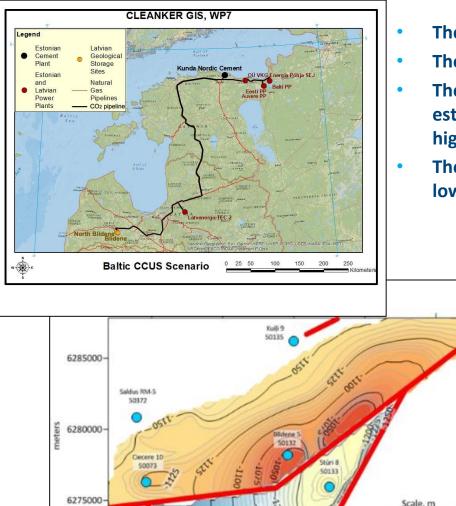


CLEAN clinKER by calcium looping for low-CO, cement

CLEA

KER

(a) Contour maps and (b) 3D structure maps of the Deimena Formation in the North Blidene (above) and the Blidene (below) structures composed using Golden Software Surfer 15 software. Fault line is indicated with red polyline. (Simmer, 2018; Shogenova et al, 2019)



Tallinn, 22 October 2019

Framework Programme of the European Unior

North Blidene and Blidene structures

- The total optimistic capacity (min-max/mean) is 186-380/297 Mt.
- The conservative capacity was estimated as 33.6-68.0/53.4 Mt.

Scale, m

-100

-1025

-1050

-1075

-1100

-1125

-1150

-1175

-1200

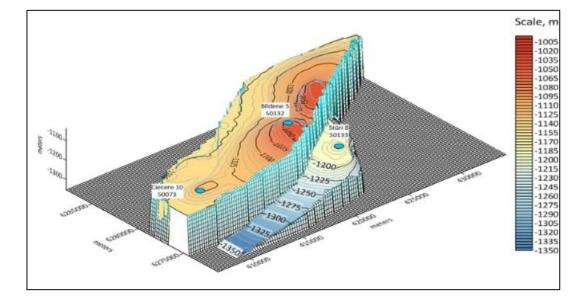
-1225

-1250

-1275

-1300

-1325


-1350

5000

430000

425000

- The average optimistic capacity is more than two times higher than the capacity estimated in the previous reports (132 Mt), explained by a larger estimated area and a higher CO₂ density in this study.
 - The average conservative capacity in this study is lower by 2.5 times, explained by the lower storage efficiency applied.

CLEAN clinKER by calcium looping for low-CO, cement

CLEA

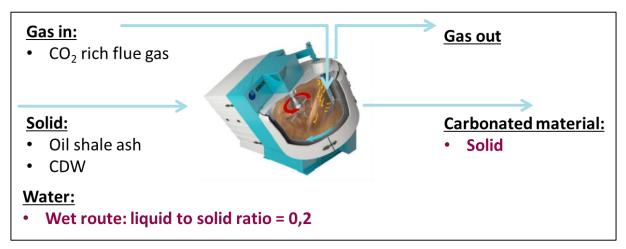
KER

(a) Contour maps and (b) 3D structure maps of the Deimena Formation in the North Blidene (above) and the Blidene (below) structures composed using Golden Software Surfer 15 software. Fault line is indicated with red polyline. (Simmer, 2018; Shogenova et al, 2019)

Tallinn, 22 October 2019

420000

meters


415000

Framework Programme of the European Union

410000


Mineral Carbonation of waste material

 Estonian burnt oil shale (oil shale ash) could be used as an effective sorbent in the proposed CO₂-mineralization process, binding up to 0.18 kg CO₂ per kg of waste.

Experimental setup: The experiments were carried out in a semi-batch Eirich EL1 type intensive mixer (Fig. 1). The wastes were treated under different operating regimes (by varying rotation speed from 300 to 3000 rpm, CO_2 content in model gas from 20 to 70%, gas flow from 30 to 400 L/h and the mass of initial sample from 150 to 600 g). The CO_2 content in gas phase was detected by Doutec infrared analyzer and the carbonated samples were dried in thermostat for 3h at 105°C and analyzed for TC and free lime content as the main indicators for the carbonation process (Shogenova et al, 2019).

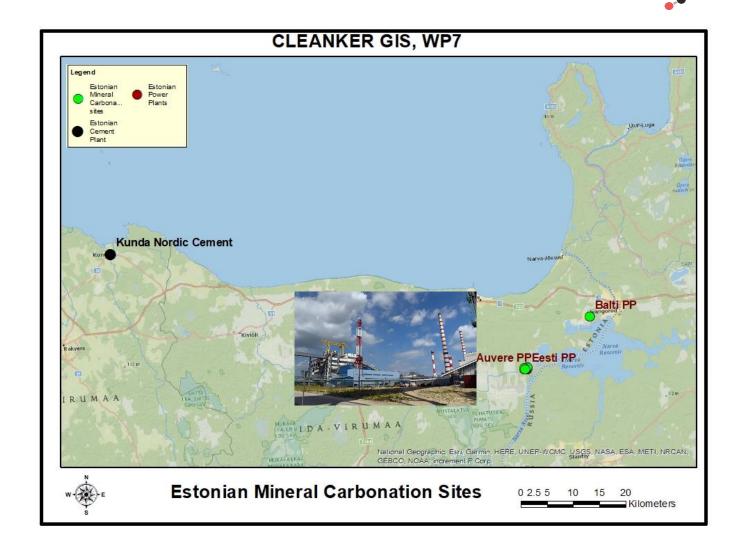
Location of the studied Estonian samples

OLEAN clinKEE by calcium looping for low-CO, cemer

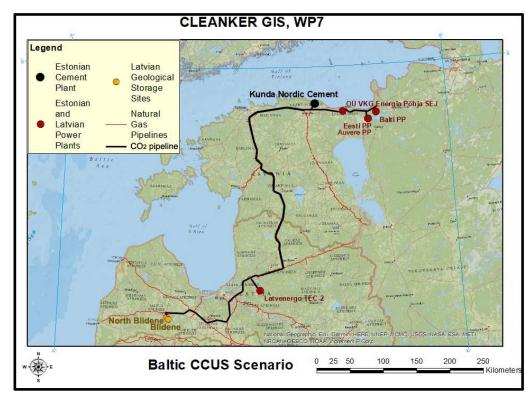
CLE/

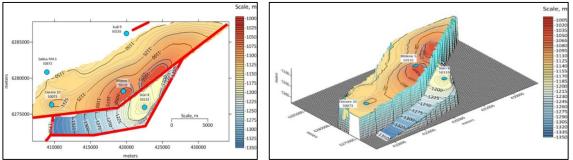
CO2 use option for the Baltic CCUS Scenario

CO2 mineral Carbonation of waste material : studied samples from NE Estonia


Ball PPEatl PP		Annual p (I	roduction kilotonnes			Annually used/sold at the market (tonnes)		Num				Amount of CO ₂ bound per kg of material (kg)			Amount of the		
neral Carbonation site	RUMAA Januar Distance of American Little	wee PP were there note uses have been left me 20 20 40 Kilometen	2016	2017	Average	2016	2017	Average	price per	studi	Reaction T (C°)	Reaction P (MPa)	Min	Max		Mineral carbonat on product	product i per kg of material (waste) bound (kg)
Eesti PP	Waste	Electrostatic precipitator ash							0.006	1	25.00	0.10133			0.0713	calcite	0.162
Eesti PP	Waste	Total ash	4321997	4440412	4381205				0.006		25.00					calcite	0.090
Balti PP	Waste	Electrostatic precipitator ash							0.006	1		0.10133		0.132		calcite	0.175
Balti PP	Waste	Total ash	866603	865401	866002	128257.0	147256.0	137756.5	0.006	1	25.00					calcite	0.257
Eesti PP	Waste	DeSOx ash							0.006	1	. 25.00	0.10133			0.043	calcite	0.098
Enefit 280	Waste	Total ash	454907	645575	550241				0.006	1	. 25.00	0.10133			0	calcite	0
Auvere PP	Waste	Electrostatic precipitator ash	369692	466014	417853				0.006	1	25.00	0.10133	0.091	0.18	0.13	calcite	0.295
Auvere PP	Waste	Total ash	2368757	716964	1542861				0.006	1	25.00	0.10133			0.131	calcite	0.298
		Total ash produced:	8381956	7134366	7758161												

Mineral carbonation samples and emission sources from Estonia. Example of the most prospective material from the state of the state of the most prospective material from the state of the s


Data for Electrostatic precipitator ash from Auvere Power Plant


Country	Estonia		
City/Town	Auvere		
Brand (name o	f plant)	Auvere PP	
Number of stud	lied samples	1	
Name of mater	ial	Electrostatic pre	cipitator ash
Reaction P (MP	a) 0.101325		
Product minera	l formula	CaCO3	
Mineral carbon	ation product	calcite	
MgO content (9	%, total MgO) - mi	n 2.43	
MgO content (9	%, total MgO) - ma	ax 5.22	
MgO content (S	%, total MgO) – av	erage 3.9125	
Average marke	t price per Eur/tor	nne	6
Annually used/	sold at the market	: (tonnes) in 2017	147256
Annually used/	sold at the market	: (tonnes) in 2016	128257
Annually used/	sold at the market	(tonnes) average	137756.5
Annual product	ion of waste (kilo	tonnes) in average	417.853
Annual product	ion of waste (kilo	tonnes) in 2017	466.014
Annual product	ion of waste (kilo	tonnes) in 2016	369.692
Amount of the	product per kg of	material	
(waste) bound	(kg)		0.295455
Amount of CO2	bound per kg of	material (kg) - min	0.091
Amount of CO2	bound per kg of	material (kg) - max	0.18
Amount of CO2	bound per kg of	material (kg) – ave	rage 0.13

Task 7.2. Baltic Scenario – new draft version, recalculated parameters

Recalculated parameters of Estonian-Latvian CCUS scenario 25

CLEAN clinKEE by calcium looping for low-CO, cement

CLEA

KER

(6 sou	rces, 2	25 yea	rs)					-	
Technical parameters		Est	tonian Po	Total Estonian share	Latvian share	Estonian Latvian CCUS			
Emissions	Kunda	Ee	sti Energ	gia	VKG Energia	CO ₂ use for	5 plants	Latvenerg	6 plants
sources	Nordic Cement	Eesti	Balti	Auvere	North	mineral carbona tion	and CO ₂ use	o, TEC2	and CO ₂ use
CO ₂ emissions per year, Mt	0.554	8.06	1.364	1.44	0.595	-0.7	11.313	0.653	11.966
Total CO ₂ emissions during 25 years, Mt	13.85	201.50	34.10	36.00	14.88	-17.50	282.83	16.33	299.15
Total CO ₂ emissions during 26 years, %	4.63	67.36	11.4	12.03	4.97	-5.85	94.54	5.46	100
Number of wells	0.5		7		0.5	-	8	0.5	8
Total transport, km	700	795	800	795	750	-	800	30+150	830
Transport share, km	32.4	535.5	91.2	95.64	37.3		792	38.2	830.2
Pipeline diameter, mm	800	800	800	800	800		800	300	800

Tallinn, 22 October 2019

Framework Programme of the European Union

Six emission sources were included in the presented version of the Baltic CCUS scenario in order to decrease costs for the industrial project partners.

CLEAN clinKEE by calcium Inoping for low-CO, cemen

- Kunda Nordic Cement Plant will share infrastructure and monitoring costs with four Estonian and one Latvian Power Plant.
- Ca-Looping capture is expected for KNC (Cost from the CLEANKER) and Oxyfuel capture for the PPs (COST from the Shogenova et al, 2011).
- > Methodology for economic modelling is developed as Deliverable of the CLEANKER project
- > Technical parameters will include CO2 storage monitoring programme during and after CO2 storage
- Cost sharing will be proportional to the CO2 emissions share
- The storage capacity is enough for 25 years of emissions for the 2018 rate. For the present rate of emissions it could be enough for the longer time.
- This BALTIC CCUS Scenario could be easily modified into Estonian CCUS scenario, which could include all interested Estonian stakeholders and Estonian Storage Site (to be developed proposal is submitted to ETAG).
- This scenario could be also modified into the Baltic offshore synergy CCUS scenario with storage and CO2-EOR in Latvian E6 structure and other CO2 use options.
- > Political decisions and regulatory changes are needed to implement these scenarios.
- Regulatory framework is analysed in CLEANKER Deliverable D7.3, was presented last year at the BASRECCS-ENOS workshop in Tallinn and available online at the ENOS project website:

http://www.enos-project.eu/media/15322/7-shogenova-baltic-regulations.pdf

Publications in Conference Proceedings, related to this scenario

14th International Conference on Greenhouse Gas Control Technologies, GHGT-14

21st -25th October 2018, Melbourne, Australia

Transport, utilization and storage of CO₂ emissions produced by cement industry: CCUS study of the CLEANKER project

Alla Shogenova^a*, Mai Uibu^b, Daniela Gastaldi^c, Kazbulat Shogenova^a, Fulvio Canonico^c, Andres Trikkel^b, Rein Kuusik^b, Jüri Ivask^a, Giovanni Cinti⁴and Karl Simmer^a

*Tallinn University of Technology, Department of Geology, Ehitajate tee 5, 19086 Tallinn, Estonia b*Tallinn University of Technology, Department of Materials and Environmental Technology "Buzzi Unicem, Via Luigi Buzzi 6, 15033 Casale Monferrato Alessandria, Italy d*Italeementi (ITC-HCG), Via Stezzano 87, 24126 Bergamo, Italy

Abstract

The EU Horizon 2020 project CLEANKER is aimed on Ca-looping capture of CO_2 emissions produced by cement industry. For the first time capture-focused EU project includes the full CCUS value chain study. This study includes techno-economic modelling of CO_2 transport, storage, and utilization scenarios; CCUS regulatory issues; definition of BUZZI and ITC-HCG cement plants suitable for first-of-a-kind CCS plant based on transport and storage opportunities; mineral trapping of CO_2 from the demo system and testing the carbonated materials for reuse in concrete.

Gaps in national regulations were analysed for Italy, Estonia, Latvia, Lithuania and Russia involved in two planned CCUS scenarios (Italian and Baltic). Russia is one of the largest emitters and Estonia has one of the highest CO2 emissions per capita in the world. Russia has not ratified yet Paris Climate Agreement. Latvia, Lithuania and Russia are not parties of the London Protocol. CO2 use options in these countries include CO2 use for EOR, Geothermal Energy Recovery and mineral carbonation using waste materials. Additional CCUS regulations and political incentives are needed in these countries. Estonian burnt oil shale could be used as an effective sorbent in the proposed CO2-mineralization process, binding up to 0.18 kg CO2 per kg of waste. The onshore CCUS scenario was proposed for CO2 emissions produced and captured by Kunda Nordic Cement plant (KNC), Eesti and Balti power plants, and Latvenergo TEC-2, the largest CO2 emitters in Estonia and Latvia. CCUS scenario includes mineral carbonation of 1.2 mln tonnes CO₂ and transport and storage of about 10 mln tonnes annually into North-Blidene and Blidene structures in the western Latvia. The average optimistic capacity of the structures (297 Mt CO₂) will allow to store these emissions for at least 29.5 years. The share of the Estonian emissions stored in Latvia will be about 92.6%, including 5.6% by KNC. Latvian stored emissions will compose 7.4%. Such scenario will support Estonia and Latvia to reach their climate strategic targets. Techno-economic modelling of this scenario will be the next step of this study. Utilizing of the re-carbonated wastes in concrete application supports closing the CO₂ cycle of Vernasca cement plant by trapping the carbon dioxide into a concrete that contains the cement of the same plant.

Keywords: CO2 emissions; Cement plant, CCUS regulations; CO2 mineral carbonation; oil shale ash; CCUS scenario; CO2 storage

* Corresponding author. Tel.: +372-56644668; E-mail address: alla.shogenova@ttu.ee

https://ssrn.com/abstract=3378578

14th International Conference on Greenhouse Gas Control Technologies, GHGT-14

21st -25th October 2018, Melbourne, Australia

Mineral trapping of CO₂ for cement industry de-carbonization

Mai Uibu^a*, Mustafa Cem Usta^a, Kadriann Tamm^a, Anastassia Zuravljova^a, Juha Kallas^a, Rein Kuusik^a, Andres Trikkel^a

*Tallinn University of Technology, Department of Materials and Environmental Technology Ehitajate tee 5, 19086 Tallinn, Estonia

Abstract

Mineralization of carbon dioxide by alkaline industrial wattes is a promising carbon capture and storage method. The Estonian oil shale based energy sector is the source of substantial CO₂ emissions as very las the formation of huge amounts of bunnt oil shale (7.2 Mt annually). Retention capacity of these wastes is about 0.1 t of CO₂ per t of sab. In addition, concrete demolition wastes, specifically the fine fractions rich in cakium hydroxide and cakium silkate hydrate, are also considered to be good sorbents for CO₂ sequestration, forming thermodynamically stable cakium cabinotate.

The objective of current research is to study burnt oil shale and concrete demolition wastes as sorbents in CO_{2} mineralization process in order to identify the most promising materials for CO_{2} capture as well as to specify reaction kinetics and operating parameters for a scale up. Results indicated that selected types of burnt oil shale could be used as effective binders in the proposed CO_{2} -mineralization system. The CO_{2} uptake was mainly attributed by the free line content, which is relatively high (10-15%) in burnt oil shale, but nonexistent in concrete demolition wastes. A kinetic model was built to predict the composition of solid and gas phase at given operating conditions. The re-carbonated materials could in turn be used in concrete application, so the CO_{2} captured from the Ca-kooping installation in Vernasca Cement Plant could be trapped and utilized in the same plant. *Kywordt:* burnt oil shale, CO_{2} internalization exceete demolition wates

1. Introduction

Mineralization of gaseous CO_2 into thermodynamically stable carbonates is one of the carbon capture and storage methods of interest. In particular, using solid wastes generated from large scale industrial processes has a number of advantages, as these materials are forming often in vicinity of CO_2 point source emissions, supply a readily available source of CaO and/or Ca-silicates without the need for mining, they are usually fine-grained with high surface areas, and the end product may be reusable in construction materials [1]. The Republic of Estonia is in a unique position due to its oil shale based energy sector. About 7.2 Mt of burnt oil shale (BOS) [2-4], consisting 5-20% of free lime [5, 6], is formed annually in the heat and power production.

Another type of waste, concrete demolition waste (CDW), contains considerable amount (10-15%) of cement hydrate that could bind CO₂ improving also the quality of the concrete slurry waste for concrete application [7]. Specifically, fine fractions of CDW are generally characterized by a higher amount of the cement hydrate (25-30%) enabling a high trapping potential for CO₂ [8]. Considering that around 0.87 ton of CO₂ is emitted for every ton of

* Corresponding author. Tel.: +372 521 4319; fax: +372 620 2001. E-mail address: mai.ubu@ttu.ee

https://ssrn.com/abstract=3365766

References

- Shogenov, K., Gei, D., Forlin, E., Shogenova, A. (2016). Petrophysical and Numerical Seismic Modelling of CO₂ Geological Storage in the E6 structure, Baltic Sea, Offshore Latvia. Petroleum Geoscience, 22, 153–164.
 10.1144/petgeo2015-017.
- Shogenov, K.; Forlin, E.; Shogenova, A. (2017a). 3D geological and petrophysical numerical models of E6 structure for CO₂ storage in the Baltic Sea. Energy Procedia, 114: GHGT-13, Lausanne, Switzerland, 14-18 November 2016. The Netherlands: Elsevier, 3564–3571, <u>10.1016/j.egypro.2017.03.1486</u>.

CLEAN clinKEE by calcium looping for low-CO, cement

CLEA

- Shogenov, K.; Shogenova, A. (2019). Cost-competitive and self-supporting geothermal energy, CO2-EOR and CO2 storage concept: case study of E6 structure in the Baltic Sea. 14th Greenhouse Gas Control Technologies Conference Melbourne 21-26 October 2018 (GHGT-14). Elsevier, 1-9 [in press].
- Shogenov, K.; Shogenova, A., Forlin, E.; Gei, D. (2017b). Synergy of CO2 storage and oil recovery in different geological formations: case study in the Baltic Sea. *Energy Procedia*, 114: GHGT-13, Lausanne, Switzerland, 14-18 November 2016. The Netherlands: Elsevier, 7047–7054./doi.org/10.1016/j.egypro.2017.03.1846.
- Shogenov, K.; Shogenova, A.; Vizika-Kavvadias, O. (2013a). Petrophysical properties and capacity of prospective for CO2 geological storage Baltic offshore and onshore structures. In: Energy Procedia (5036–5045). Elsevier. <u>10.1016/j.egypro.2013.06.417</u>.
- Shogenov, Kazbulat; Shogenova, Alla; Vizika-Kavvadias, Olga. (2013b). Potential structures for CO₂ geological storage in the Baltic Sea: case study offshore Latvia. Bulletin of the Geological Society of Finland, 85 (1), 65–81.
- Shogenova, A.; Nordbäck, N.; Sopher, D.; Shogenov, K.; Niemi, A.; Juhlin, C.; Šliaupa,S.; Wójcicki, A.; Ivask, J.; Klimkowski, L.; Nagy, S. (2019). CO₂ storage drivers and barriers in the Baltic Sea Region. 14th International Conference on Greenhouse Gas Control Technologies, GHGT-14, Melbourne, Australia, 21-25 October, 2018. Elsevier, 1–9 [in press].
- Shogenova, A.; Shogenov, K. (2017). Integrated Use of Subsurface and CO₂ for Enhanced Recovery of Resources Way to Sustainable Development and Synergy with Renewable Energy. 79th EAGE Conference and Exhibition 2017: 79th EAGE Conference & Exhibition, Paris, France, June 12–15, 2017. EAGE, 1–5. (We P4 01), 10.3997/2214-4609.201701375.
- Shogenova, A.; Shogenov, K. (2018). Definition of a methodology for the development of a techno-economic study for CO₂ transport, storage and utilization. Deliverable D7.1 of Horizon 2020 project CLEANKER, Confidential, 56 pages.
- Shogenova, A.; Shogenov, K.; Pomeranceva, R.; Nulle, I.; Neele, F.; Hendriks, C. (2011). Economic modelling of the capture–transport–sink scenario of industrial CO₂ emissions: the Estonian–Latvian cross-border case study. Elsevier, Energy Procedia 4, 2385-2392, https://doi.org/10.1016/j.egypro.2011.02.131.
- Shogenova, A.; Sliaupa, S.; Shogenov, K.; Sliaupiene, R.; Pomeranceva, R.; Vaher, R.; Uibu, M.; Kuusik, R. (2009b). Possibilities for geological storage and mineral trapping of industrial CO₂ emissions in the Baltic region. Energy Procedia, 2753–2760, <u>10.1016/j.egypro.2009.02.046</u>.
- Shogenova, A.; Sliaupa, S.; Vaher, R.; Shogenov, K.; Pomeranceva, R. (2009a). The Baltic Basin: structure, properties of reservoir rocks and capacity for geological storage of CO2. Estonian Journal of Earth Sciences, 58 (4), 259–267.
- Shogenova, A.; Uibu, M.; Gastaldi, D.; Shogenov, K.; Canonico, F.; Trikkel, A.; Kuusik, R.; Ivask, J.; Cinti, G.; Simmer, K. (2019). Transport, utilization and storage of CO2 emissions produced by cement industry: CCUS study of the CLEANKER project. 14th International Conference on Greenhouse Gas Control Technologies, GHGT-14, Melbourne, Australia, 21-25 October, 2018. Elsevier, 1–9 [in press].
- Simmer K. (2018). Estonian-Latvian Transboundary Carbon Dioxide Capture, Transport and Storage (CCS) Scenario for the Cement Industry. Master Thesis. Tallinn University of Technology, 1-48, https://digi.lib.ttu.ee/i/?10547&
- Šliaupa, S.; Lojka, R.; Tasáryová, Z.; Kolejka, V., Hladík, V.; Kotulová, J., Kucharič, L.; Fejdi, V.; Wojcicki, A.; Tarkowski, R.; Uliasz-Misiak, B.; Šliaupienė, R.; Nulle, I.; Pomeranceva, R.; Ivanova, O.; Shogenova, A.; Shogenov, K. (2013). CO2 Storage Potential Of Sedimentary Basins of Slovakia, The Czech Republic, Poland, And Baltic States. Geological Quarterly, 57 (2), 219–232.10.7306/gq.1088.
- Shogenova, A.; Uibu, M.; Gastaldi, D.; Shogenov, K.; Canonico, F.; Trikkel, A.; Kuusik, R.; Ivask, J.; Cinti, G.; Simmer, K., 2019. Transport, utilization and storage of CO2 emissions produced by cement industry: CCUS study of the CLEANKER project. GHGT-14, Melbourne, Australia, 21-25 October, 2018. Elsevier, SSRN, 1–9.
- .Alla Shogenova and Kazbulat Shogenov. 2018. Definition of a methodology for the development of a techno-economic study for CO₂ transport, storage and utilization. Alla Shogenova and Kazbulat Shogenov, Deliverable D 7.1. of the CLEANKER project, 56 pp.
- > Alla Shogenova, Kazbulat Shogenov and Jüri Ivask . 2018. Regional and national regulations, gaps and recommendations for CCUS scenarios Deliverable D7.3. 72 pp.
- Public: http://www.cleanker.eu/downloads/public-deliverables/d73-regional-and-national-regulations-gaps-and-recommendations-for-ccus-scenarios.html
- Mai Uibu, Rein Kuusik, et al, Lab-scale experiments on waste oils shale ash and CDW carbonation and recommendations for the design of the mineralization reactor in Vernasca. Deliverable D7.4., 44 pp.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement n. 764816

This work is supported by the China Government (National Natural Science Foundation of China) under contract No.91434124 and No.51376105

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

The CLEANKER project

The presented results were partly supported by the EC projects FP6: EU GeoCapacity, CO2 NetEast FP7: CGS Europe, CO2 Stop Horizon 2020: ENOS project

Estonian targeted funding programme (project SF0320080s07 and IUT19-22) of the Estonian Ministry of Education and Research, Archimedes Foundation programme DoRa, Estonian Doctoral School of Earth Sciences and Ecology and EU FP7 Programme Marie Curie Research Training Network 'Quantitative Estimation of Earth's Seismic Sources and Structure' (QUEST)

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

The CLEANKER project